News

Mitochondrial Chitter-Chatter: Unveiling the Molecular Structures of Cellular Respiration

In order to generate energy, our bodies transfer electrons from food—sugars, fats and proteins—to molecular oxygen, which allows our cells to respire and function. Performed by the mitochondrial electron transport chain (ETC), this process creates energy-storing and -transporting adenosine triphosphate (ATP), the “molecular currency” for energy in the cell.

The Repellence Cocktail: Mosquito Sense of Smell Reveals More Mysteries

When nibbling mosquitoes cause irritation, the sensible move is to grab mosquito repellent. Distinguished Professor Walter Leal, Department of Molecular and Cellular Biology, likes to remind his students of this. But if they’re stepping outside for only a short period of time during the buggy Davis summers, Leal will offer a natural repellent like methyl salicylate, otherwise known as wintergreen oil.

Mapping Cells in the “Immortal” Regenerating Hydra

Unlike the stem cells of an adult human, the stem cells of an adult Hydra—a small freshwater invertebrate related to jellyfish and corals—are in a constant state of renewal, bestowing it with amazing regenerative capabilities and nearly biological immortality. Around 100,000 cells make up the Hydra body, and amazingly, these cells renew every 20 days thanks to the Hydra’s bottomless well of stem cells.

Discovering Curiosity: Building Mini-Organs to Fight Pancreatic Cancer with New Faculty Chang-il Hwang

When a healthy cell turns cancerous a cascade of events enables the cancer to spread throughout the body. But its origin lies within a single progenitor cell.

“What goes wrong with that particular cell?” asked Assistant Professor Chang-il Hwang, Department of Microbiology and Molecular Genetics. “Something happens at the molecular level. One DNA molecule, or one protein molecule changes.”